ارائه یک مدل براساس نقشه شناختی فازی جهت تحلیل عوامل اثرگذار بر رضایت مشتری ترمینال کانتینری ( مورد مطالعه: اداره کل بنادر و دریانوردی استان بوشهر)

نوع مقاله : مدیریت استراتژیک (برنامه­‌ها، تحلیل‌های استراتژیکی تولید، استراتژی‌های بازاریابی و مدیریت بازار، کسب­وکار، سرمایه گذاری، منابع انسانی، مالی، رقابت، . . . )

نویسندگان

1 دانشجوی کارشناسی ارشد مدیریت صنعتی، ادبیات و علوم انسانی، خلیج فارس، بوشهر، ایران

2 دانشگاه خلیج فارس بوشهر /مدیرگروه مدیریت صنعتی

چکیده

وضعیت کنونی اقتصاد کشور، رشد روزافزون ترمینال­های کانتینری و بازار رقابتی این صنعت، مدیران ترمینال کانتینری را ملزم به حفظ مشتریان کنونی و جذب مشتریان جدید در راستای حفظ منافع سازمان می­نماید.  ازآنجایی­که رضایت مشتریان ترمینال­های کانتینری تحت تأثیر شاخص­های متنوع و درهم­تنیده می­باشد، پژوهش حاضر برای تعیین و تشخیص میزان ارتباط بین شاخص­های رضایت مشتری از نقشه­شناختی­فازی استفاده­نموده­است. درهمین­راستا، این پژوهش از طریق مطالعه کتابخانه­ای به شناسایی شاخص­های مرتبط با رضایت مشتریان ترمینال کانتینری پرداخته و سپس میزان نفوذ هریک از شاخص­ها بر یکدیگر را با استفاده از نظر متخصصان ترمینال کانتینری استان بوشهر، تعیین­نموده­است. درادامه، ماتریس به­دست­آمده در نرم­افزار Fcmapper اجرا و نقشه­شناختی­فازی ترسیم گردید. به­ترتیب، عملکرد اپراتور، سرعت عملیات تخلیه­وبارگیری و کیفیت خدمات سه شاخص مهم ازنظر محوریت شناسایی شدند که مدیران هنگام سیاست­گذاری بایستی به این شاخص­ها توجه ویژه نمایند.پژوهش حاضر، به مدیران ترمینال کانتینری استان بوشهر این امکان را می­دهد تا با استفاده از شاخص­های محوری و شناسایی خوشه­های مؤثر در نقشه شناختی فازی، سیاست مناسب را در جهت افزایش رضایت مشتری اعمال نمایند. برهمین­اساس دو خوشه­ی مهم در جهت افزایش رضایت مشتریان، شناسایی و به مدیران پیشنهاد گردید تا درجهت افزایش شایستگی کارکنان، استفاده از تجهیزات مدرن و نظارت برحمل بار، بیشتر تلاش نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Presentation of a Model based on Fuzzy Cognitive Map for Analyzing the Factors Affecting the Customer Satisfaction of the Container Terminal (Case Study: Bushehr Province Department of Ports and Mnitime organization)

نویسندگان [English]

  • fatemeh khajeh 1
  • Hamid Shahbandarzadeh 2
1 Master's Degree in Industrial Management, Literature and Humanities, Persian Gulf, Bushehr, Iran
2 Chief of Department of Industrial Management/ Persian Gulf university
چکیده [English]

The current economic situation of the country, the growth of container terminals and the competitive market of this industry, obliges container terminal managers to keep their current customers and absorb new customers to save the interests of the organization. Since the customer satisfaction of container terminals has complex and various factors, the present study is determined and identified the degree of influence among factors of customer satisfaction with fuzzy cognitive map (FCM). This study are Identified the factors related to customer satisfaction of the container terminal through studying the library and interviewing experts and then the degree of influence of each factors on each other by using the interview with experts of container terminal in bushehr province are determined. Then the matrix obtained in Fcmapper software and the fuzzy cognitive map is drawn. Three important indicators are centrality identified in terms of operator performance, speed of unloading and loading operations, and service quality, respectively, such that managers will pay special attention to these indicators when policy are taken.
The present research is enabled the container terminal managers of bushehr province to using centralized indexes and identifying effective clusters in the fuzzy cognitive map to apply appropriate policies to increase customer satisfaction. According to this, two important clusters are recognized and suggested to management in order to increase customer satisfaction.Also, using of modern equipment and supervising cargo handling is useful to increase the competence of the staff.

کلیدواژه‌ها [English]

  • Container Terminal Interests
  • Customer Satisfaction
  • Fuzzy Cognitive Map
  • Graph theory
  • Neural Network
-        Bag˘datlı, M. E., Akbıyıklı, R., & Papageorgiou, E. (2017). A Fuzzy Cognitive Map Approach Applied in Cost–Benefit Analysis for Highway Projects. International Journal of Fuzzy Systems, 19(5), 1512-1527.
-        Baiati Sedaghat, M., Sardari, A. and Yazdani, N. (2017). Investigating the Relationship between Dimensions of Corporate Social Responsibility and Customer Loyalty (Case Study: Rajah Passenger Transportation Companies), journal of Business Strategies (Daneshvar Behavior), 90, 77-90 (In Persian).
-        Bassi, F. (2018). A new approach to validate customersatisfaction multi-item measures: the case of shopping goods. The International Review of Retail, Distribution and Consumer Research.
-        Bazzazian, R. and Saeidnia, H.R. (2016). Investigating the Factors Affecting the Quality of Sales Services on Customer Satisfaction in Online Sales by Samsung Company, journal of World challenges, 2 (1) (In Persian).
-        Bevilacqua, M., Ciarapica, F. E., & Mazzuto, G. (2018). Fuzzy cognitive maps for adverse drug event risk management. Safety science, 102, 194-210.
-        Cho, C.-H., Kim, B.-I., & Hyun, J.-H. (2010). A comparative analysis of the ports of Incheon and Shanghai: The cognitive service quality of ports, customer satisfaction, and post-behaviour. Total Quality Management, 21(9), 919–930.
-        Ciavolino, E., Salvatore, S., Mossi, P., & Vernai, M. (2017). Quality and prosumership. PROSERV: a new tool for measuring the customer satisfaction. International Journal of Business and Society, 18(3), 409-426.
-        Djelassia, S., Diallob, M., & Zielke, S. (2018). How self-service technology experience evaluation affects waiting time and customer satisfaction? A moderated mediation model. Decision Support Systems.
-        Emadi, M., Hoseini, H., Ghahremani Tabrizi, K. And. Mohammad Khani, F. (2014). Investigating the Factors Affecting Customer Satisfaction in Iranian Sports Stores Using the Kano Satisfaction Test. Journal of Two research projects in sport management and motion behavior, 4(12), 119-133 (In Persian).
-        Fattahi Aradakani, R., Fattahi Aradakani, F. And. Rezaeian, H. (2017). The Effect of Public Relations Informing on Customer Attraction. Journal of new research in management and accounting, 1, 187-210 (In Persian).
-        Fernandes, T., & Pedroso, R. (2017). The effect of self-checkout quality on customer satisfaction and repatronage in a retail context. Service Business, 11(1), 60-92.
-        Fynes B. & De Búrca S. (2005). The effects of design quality on quality performance. International Journal of Production Economics, 96, 1-14.
-        Groth, J.C. (1994). The exclusive value principle: a concept of marketing. Journal of Product and Brand Management, 3, 8-18.
-        Ghasemi, A.R. And. Ghobadian, M.R. (2015). Drawing and ranking of future energy scenarios of Iran using fuzzy cognitive map and scenario analysis. Journal of Technology Management and Development, 2(4) (In Persian).
-        Ha, M.-S. (2003). A comparison of service quality at major container ports: implications for Korean ports. Journal of Transport Geography, 11, 131-137.
-        Haghighi­ Nasab, M. And. Abedin, B. (2008). Multivariate Sustainability Analysis (MUSA) Model for Customer Satisfaction Measurement.  Journal of Marketing Management, 3(4), 85-102 (In Persian).
-        Jafari, S. (2012). Container Transport. Tehran: The Secrets of Knowledge (In Persian).
-        Jalilian, A., Saeidi, S-N., Ka’bi, A., Razmjuie, D. And. Betoundi, Z. (2013). Identifying and Investigating the Factors Affecting Customer Satisfaction from Marine Services and Port of Khorramshahr Port Using the Servqual Model. The first international epic political conference (with an approach to Middle East changes) and economic epic (with an approach to management and accounting). Rooden: Islamic Azad University of Roudehen Branch (In Persian).
-        Jeevan, J., Chen, S.-L., & Cahoon, S. (2018). Determining the influential factors of dry port operations: worldwide experiences and empirical evidence from Malaysia. Maritime Economics & Logistics, 20(3), 476-494.
-        Jyh, D., & Jeng, F. (2015). Generating a Causal Model of Supply Chain Collaboration Using the Fuzzy DEMATEL Technique. Computers & Industrial Engineering, 87, 283-295.
-        Kireev, V. S., Smirnov, I., & Tyunyakov, V. (2018). Automatic Fuzzy Cognitive Map Building Online system. Procedia Computer Science, 123, 228-233.
-        Kolanović, I., Skenderović, J., & Zenzerović, Z. (2008). Defining the port service quality model by using the factor analysis. Pomorstvo/Journal of Maritime Studies, 22(2).
-        Lin,S., Yang, C., Chan, Y. & Shen, C. (2010). Refining Kano’s quality attribute satisfaction model: A moderated regression approach. International Journal of Production Economics, 126, 255-263.
-        Mahmoud, M. A., Hinson, R., & Adika, M. (2018). The Effect of Trust, Commitment, and Conflict Handling on Customer Retention: The Mediating Role of Customer Satisfaction. Journal of Relationship Marketing, 1-20.
-        Mohammadi Zanjirani, D., Eshtiaghian, N., Razanhaan F. (2012). Multi-criteria and combined approach of educational needs assessment based on employee competency analysis. Journal of New Educational Approaches, 7(15), 107-136 (In Persian).
-        Naghavian, B. (2015). The Effect of Service Quality on Customer Satisfaction. The 2end International Conference on Advanced Research in Management, Economics and Accounting. Kuala Lumpur-Malaysia, Karin Institute of Excellence (In Persian).
-        Nasserzadeh, S. M., Jafarzadeh, M., Mansouri, T., & Sohrabi, B. (2008). Customer Satisfaction Fuzzy Cognitive Map in Banking Industry. Communications of the IBIMA, 2(21), 151-162.
-        Özesmi, U., & Özesmi, S. (2004). Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecological Modelling, 176, 43–64.
-        Potra, S., Pugnaa, A., Negrea, R., & Izvercian, M. (2018). Customer perspective of value for innovative products and services. Procedia - Social and Behavioral Sciences, 238, 207 – 213.
-        Radfar, R., Hoseinzadeh Lotfi, F. And. Khalilu, A. (2010). Measuring Customer Satisfaction Using Fuzzy Logic (Case Study: ATM of Saderat Iran Bank in Tehran). Journal of Marketing Management, 8 (In Persian).
-        Salehi, M. And.  Hame vand, M. (2016). An innovative approach based on error and cpeland analysis to extract and prioritize effective hazards over project completion time. Journal of Tomorrow's Management, 15(1), 50-72 (In Persian).
-        Thai, V. V. (2016). The impact of port service quality on customer satisfaction: The case of Singapore. Maritime Economics & Logistics, 1-18.
-        Tsadiras, A., & Zitopoulos, G. (2017). Fuzzy cognitive maps as a decision support tool for container transport logistics. Evolving Systems, 8(1), 19-33.
-        Ugboma, C., C. Ogwude, I., Ugboma, O., & Nnadi, K. (2007). Service quality and satisfaction measurements in Nigerian ports: an exploration. Maritime Policy & Management, 34(4), 331-346.
-        Valmohammadi, Ch., Movahedi, M.M., soufiabadi, J., kolahi, B. (2015). Using of fuzzy cognitive strategy map in determining the organizational success path. Journal of Productivity management, 34, 201-231(In Persian).
-        Zare, H., Raja'i, R., Tomaj, Y. and Haqi Chubar, R. (2015). Strategic Analysis of Container Terminal Status of Chabahar Port Using SWOT Matrix. Journal of Marine Science and Technology, 77, 21-29 (In Persian).