نقش پویایی صنعت و ظرفیت ICT بر رابطه سازمندی فناوری با ظرفیت AI-CRM

نوع مقاله : فناوری(سیستم اطلاعاتی مدیریت، مدیریت دانش، برون سپاری، سیاستگذاری فناوری، انتقال فناوری، اکوسیستم فناوری، تجاری‌سازی فناوری، فناوری‌های پیشرفته، . . . )

نویسنده

دانشیار گروه اقتصاد ، واحد نراق، دانشگاه آزاد اسلامی، نراق، ایران

10.22080/jem.2024.27050.3930

چکیده

هدف مطالعه حاضر بررسی نقش تعدیلی پویایی صنعت و میانجی ظرفیت فناوری اطلاعات و ارتباطات بر رابطه سازمندی فناوری با ظرفیت مدیریت ارتباط با مشتری مبتنی بر هوش مصنوعی در نظر گرفته شد. پژوهش حاضر از نظر هدف کاربردی و به صورت توصیفی-پیمایشی است. داده‌ها به روش میدانی و با استفاده از پرسشنامه استاندارد از ۱۱۶ مدیر شرکت جمع‌آوری و با روش معادلات ساختاری مورد تجزیه و تحلیل قرار گرفت. نتایج نشان داد: سازمندی فناوری در دوره انقلاب صنعتی چهارم به طور مثبت با ظرفیت مدیریت ارتباط با مشتری مبتنی بر هوش مصنوعی مرتبط است و ظرفیت فناوری اطلاعات و ارتباطات این رابطه را تعدیل می‌کند. پویایی صنعت رابطه بین ظرفیت فناوری اطلاعات و ارتباطات و ظرفیت مدیریت ارتباط با مشتری مبتنی بر هوش مصنوعی را تعدیل می‌کند. هر چه پویایی صنعت بالاتر باشد، تأثیر ظرفیت فناوری اطلاعات و ارتباطات بر ظرفیت مدیریت ارتباط با مشتری مبتنی بر هوش مصنوعی بیشتر است. بنابراین شرکت‌ها باید بیشتر بر روی ظرفیت‌های پویا یعنی ظرفیت مدیریت ارتباط با مشتری مبتنی بر هوش مصنوعی در موقعیت‌های پویا تمرکز کنند. شرکت هنگامی می‌تواند یک ظرفیت‌ پویا را توسعه دهد که بتواند سازمندی فناوری و ظرفیت‌های فناوری اطلاعات و ارتباطات خود را در پاسخ به یک وضعیت تجاری در حال تغییر ترکیب کرده، بسازد و پیکربندی مجدد کند. تغییرات سریع فناوری، تغییر در بازارهای تولید و کار، تغییر جمعیت از روستاها به شهرها در کشورهای در حال توسعه و تغییرات آب و هوایی، باعث می‌شود که مدیران توجه خود را بر توسعه ظرفیت‌های پویا یعنی ظرفیت مدیریت ارتباط با مشتری مبتنی بر هوش مصنوعی برای تکامل در این محیط در حال تغییر متمرکز کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Role of Industry Dynamism and ICT Capability on the Relationship Between Technology Readiness and AI-CRM Capability

نویسنده [English]

  • Mostafa Heidari Haratemeh
Associate Professor, Department of Economics, Naragh Branch, Islamic Azad University, Naragh, Iran
چکیده [English]

The purpose of this study was to investigate the moderating role of industry dynamism and the mediating role of information and communication technology capability on the relationship between technology readiness and artificial intelligence-based customer relationship management. The current research is applied in terms of purpose and follows a descriptive survey approach. The data was collected from 116 company managers using a field method and a standard questionnaire and analyzed using the structural equation method. The results showed that technology readiness during the fourth industrial revolution is positively related to the capability of artificial intelligence-based customer relationship management, and the capability of information and communication technology moderates this relationship. Industry dynamism moderates the relationship between ICT capacity and AI-based customer relationship management capability. The higher the dynamism of the industry, the greater the impact of information and communication technology capability on AI-based customer relationship management. Therefore, companies should focus more on dynamism capabilities, i.e., the capability of artificial intelligence-based customer relationship management in dynamic situations. A firm can develop a dynamism capability when it can combine, build, and reconfigure its technology readiness and ICT capabilities in response to a changing business situation. Rapid technological changes, changes in production and labor markets, population change from villages to cities in developing countries, and climate changes make managers pay attention to the development of dynamism capabilities, i.e., the capability of AI-based customer relationship management to focus on evolution in this changing environment.

کلیدواژه‌ها [English]

  • AI-based customer relationship management
  • Industry Dynamism
  • Information and Communication Technology
  • Technology Readiness
Akter, S., Gunasekaran, A., Wamba, S. F., Babu, M. M., & Hani, U. (2020). Reshaping competitive advantages with analytics capabilities in service systems. Technological Forecasting and Social Change, 159, Article 120180.
Bag, S., & Rahman, M. S. (2021). The role of capabilities in shaping sustainable supply chain flexibility and enhancing circular economy-target performance: An empirical study. Supply Chain Management, ahead-of-print. https://doi.org/10.1108/SCM-05- 2021-0246
Bag, S., Srivastava, G., Bashir, M.M.A., Kumari, S., Giannakis, M. & Chowdhury, A.H. (2021c). Journey of customers in this digital era: Understanding the role of artificial intelligence technologies in user engagement and conversion. Benchmarking: An International Journal, ahead-of-print. https://doi.org/10.1108/BIJ-07-2021-0415
Chatterjee, S., Rana, N. P., Khorana, S., Mikalef, P., & Sharma, A. (2021). Assessing Organizational Users’ Intentions and Behavior to AI Integrated CRM Systems: A Meta-UTAUT Approach. Information Systems Frontiers. https://doi.org/10.1007/s10796-021-10181-1
Cherkasova, E. V., & Zainullina, M. R. (2020, May). Digital Assistants in Managing Customer Relationships in Modern Companies. In International Scientific and Practical Conference (pp. 539-546). Springer,
Cham.Dooley, J (2020). Five examples that demonstrate the value of AI for B2B marketers. Available at https://www.clickz.com/five-examples-that-demonstrate-the-value-of-ai-for-b2b-marketers/261827/.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics., 18(3). https://doi.org/10.1177/ 002224378101800313Gligor,
Gligor, D. M., Golgeci, I., Rego, C., Russo, I., Bozkurt, S., Pohlen, T., & Garg, V. (2021). Examining the use of fsQCA in B2B marketing research: Benefits, current state and agenda for future research. Journal of Business & Industrial Marketing. ahead-of-print.
Hair, J. F., Gabriel, M., & Patel, V. (2014). AMOS covariance-based structural equation modelling (CB-SEM): Guidelines on its application as a marketing research tool. Available at SSRN: Brazilian Journal of Marketing, 13(2). Https://ssrn.com/abstract 2676480.
Han, R., Lam, H. K., Zhan, Y., Wang, Y., Dwivedi, Y. K., & Tan, K. H. (2021). Artificial intelligence in business-to-business marketing: A bibliometric analysis of current research status, development and future directions.  Industrial Management & Data Systems., 121(12), 2467–2497.
Itani, O. S., Kalra, A., & Riley, J. (2022). Complementary effects of CRM and social media on customer co-creation and sales performance in B2B firms: The role of salesperson self-determination needs. Information & Management, 103621.
Ledro, C., Nosella, A., & Vinelli, A. (2022). Artificial intelligence in customer relationship management: Literature review and future research directions. Journal of Business & Industrial Marketing, 37(13), 48–63.
Lefaix-Durand, A., Paulin, D., Kozak, R., Beauregard, R. (2005). Interfirm relationships and value creation: A synthesis, conceptual model and implications for future research. Working Paper, Centor, Quebek.
M¨oller, K., Nenonen, S., & Storbacka, K. (2020). Networks, ecosystems, fields, market systems. Making sense of the business environment. Industrial Marketing Management,90, 380–399.
Morgan, N. A., & Slotegraaf, R. J. (2012). Marketing capabilities for b2b firms. In Handbook of business-to-business marketing. Edward Elgar Publishing.
Napitupulu, D., Syafrullah, M., Rahim, R., Abdullah, D., & Setiawan, M. I. (2018, April). Analysis of user readiness toward ICT usage at small medium enterprise in south tangerang. In Journal of Physics: Conference Series, 1007 (1), 012042. IOP Publishing .
Nguyen, B., Jaber, F., & Simkin, L. (2022). A systematic review of the dark side of CRM: The need for a new research agenda. Journal of Strategic Marketing, 30(1), 93–111.
Oguji, N., & Owusu, R. A. (2021). Market entry into Africa: Acquisitions and international joint ventures. Studies of foreign firms’ market entry strategies, challenges, and performance in Africa. https://doi.org/10.1002/tie.22170.
Peruchi, D. F., de Jesus Pacheco, D. A., Todeschini, B. V., & ten Caten, C. S. (2022). Moving towards digital platforms revolution. Antecedents, determinants and conceptual framework for offline B2B networks. Journal of Business Research, 142,344–363.
Ronaghi, M. H., & Mosakhani, M. (2022). The effects of blockchain technology adoption on business ethics and social sustainability: Evidence from the Middle East. Environment, Development and Sustainability, 24(5), 6834–6859.
Singh, S., & Santos, J. D. (2022). Investigating the Critical Success Factors of Artificial Intelligence-Driven CRM in JK Tyres: A B2B Context. In Adoption and Implementation of AI in Customer Relationship Management (pp. 115–126). IGI Global.
Telukdarie, A., Buhulaiga, E., Bag, S., Gupta, S., & Luo, Z. (2018). Industry 4.0 implementation for multinationals. Process Safety and Environmental Protection, 118,316–329.
Unctad. (2018). Global FDI Flows Slipped Further in 2017. Investment Trends Monitor, 28.
Vesal, M., Siahtiri, V., & O’Cass, A. (2021). Strengthening B2B brands by signalling environmental sustainability and managing customer relationships. Industria Marketing Management, 92, 321–331.
Wang, W. Y. C., & Wang, Y. (2020). Analytics in the era of big data: the digital transformations and value creation in industrial marketing. 86, 12-15. https://doi. org/10.1016/j.indmarman.2020.01.005.
Zadek, S. (2004). The path to corporate responsibility. Harvard Business Review, 82(12),159-172. Springer, Berlin, Heidelberg.
Zhang, C., Wang, X., Cui, A. P., & Han, S. (2020). Linking big data analytical intelligence to customer relationship management performance. Industrial Marketing Management, 91, 483–494.
Zhou, Z., Ding, Y., Feng, W., & Ke, N. (2021). Extending B2B brands into the B2C market: Whether, when, and how brands should emphasize B2B industry background. Journal of Business Research, 130, 364–75.