Alberts, C. J., & Dorofee, A. (2002). Managing information security risks: the OCTAVE approach. Addison-Wesley Longman Publishing Co., Inc..
Amantea, I. A., Di Leva, A., & Sulis, E. (2019). Risk-Aware Business Process Management: A Case Study in Healthcare. In The Future of Risk Management, Volume I (pp. 157-174). Palgrave Macmillan, Cham.
Bae, H., Lee, S., & Moon, I. (2014). Planning of business process execution in Business Process Management environments. Information Sciences, 268, 357-369.
Barber, B., & Davey, J. (1992). The use of the ccta risk analysis and management methodology cramm in health information systems. Medinfo, 92, 1589-1593.
Bezerra, F., & Wainer, J. (2008, June). Anomaly detection algorithms in business process logs. In Proceedings of the 10th International Conference on Enterprise Information Systems (ICEIS), volume AIDSS, Barcelona, Spain (pp. 11-18).
Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., & Schulte, S. (2017). Event-based failure prediction in distributed business processes. Information Systems.
Bouarfa, L., & Dankelman, J. (2012). Workflow mining and outlier detection from clinical activity logs. Journal of biomedical informatics, 45(6), 1185-1190.
Chuang, Y. C., Hsu, P., Wang, M., & Chen, S. C. (2010). A frequency-based algorithm for workflow outlier mining. In International Conference on Future Generation Information Technology (pp. 191-207). Springer, Berlin, Heidelberg.
Clarkson, P. J., Simons, C., & Eckert, C. (2004). Predicting change propagation in complex design. Journal of Mechanical Design, 126(5), 788-797.
Conforti, R., Fink, S., Manderscheid, J., & Röglinger, M. (2016). PRISM–a predictive risk monitoring approach for business processes. In International Conference on Business Process Management (pp. 383-400). Springer, Cham.
Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W. M., & Ter Hofstede, A. H. (2015). A recommendation system for predicting risks across multiple business process instances. Decision Support Systems, 69, 1-19.
Conforti, R., Fortino, G., La Rosa, M., & Ter Hofstede, A. H. (2011). History-aware, real-time risk detection in business processes. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems"(pp. 100-118). Springer, Berlin, Heidelberg.
Conforti, R., La Rosa, M., Fortino, G., Ter Hofstede, A. H., Recker, J., & Adams, M. (2013). Real-time risk monitoring in business processes: A sensor-based approach. Journal of Systems and Software, 86(11), 2939-2965.
Di Francescomarino, C., Ghidini, C., Maggi, F. M., & Milani, F. (2018, September). Predictive Process Monitoring Methods: Which One Suits Me Best?. In International Conference on Business Process Management (pp. 462-479). Springer, Cham.
Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2013). Fundamentals of business process management (1)2, Heidelberg: Springer.
Fenz, S., & Neubauer, T. (2009, April). How to determine threat probabilities using ontologies and Bayesian networks. In Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security and Information Intelligence Challenges and Strategies (p. 69). ACM.
Haggag, M. H., Khedr, A. E., & Montasser, H. S. (2015). A Risk-Aware Business Process Management Reference Model and Its Application in an Egyptian University. International Journal of Computer Science and Engineering Survey, 6(2), 11.
Handa, H., & Garg, A. (2018). Approach to Reduce Operational Risks in Business Organizations. In Information and Communication Technology for Sustainable Development (pp. 123-131). Springer, Singapore.
Von Alan, R. H., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS quarterly, 28(1), 75-105.
Hsu, P. Y., Chuang, Y. C., Lo, Y. C., & He, S. C. (2017). Using contextualized activity-level duration to discover irregular process instances in business operations. Information Sciences, 391, 80-98.
Jakkula, V. R., Crandall, A. S., & Cook, D. J. (2009). Enhancing anomaly detection using temporal pattern discovery. In Advanced intelligent environments (pp. 175-194). Springer, Boston, MA.
Jakoubi, S., Tjoa, S., & Quirchmayr, G. (2007, June). Rope: A Methodology for Enabling the Risk-Aware Modelling and Simulation of Business Processes. In ECIS (pp. 1596-1607).
Kang, B., Kim, D., & Kang, S. H. (2012). Real-time business process monitoring method for prediction of abnormal termination using KNNI-based LOF prediction. Expert Systems with Applications, 39(5), 6061-6068.
Kim, J., Lee, J., & Choi, I. (2017). An integrated process‐related risk management approach to proactive threat and opportunity handling: A framework and rule language. Knowledge and Process Management, 24(1), 23-37.
Kim, S., Cho, N. W., Lee, Y. J., Kang, S. H., Kim, T., Hwang, H., & Mun, D. (2013). Application of density-based outlier detection to database activity monitoring. Information Systems Frontiers, 15(1), 55-65.
Kratsch, W., Manderscheid, J., Reißner, D., & Röglinger, M. (2017). Data-driven process prioritization in process networks. Decision Support Systems, 100, 27-40.
Kuna, H. D., García-Martínez, R., & Villatoro, F. R. (2014). Outlier detection in audit logs for application systems. Information Systems, 44, 22-33.
Lund, M. S., Solhaug, B., & Stølen, K. (2010). Model-driven risk analysis: the CORAS approach. Springer Science & Business Media.
Pika, A., van der Aalst, W. M., Fidge, C. J., ter Hofstede, A. H., & Wynn, M. T. (2012, September). Predicting deadline transgressions using event logs. In International Conference on Business Process Management (pp. 211-216). Springer, Berlin, Heidelberg.
Pika, A., van der Aalst, W. M., Wynn, M. T., Fidge, C. J., & ter Hofstede, A. H. (2016). Evaluating and predicting overall process risk using event logs. Information Sciences, 352, 98-120.
Rosemann, M., & Zur Muehlen, M. (2005). Integrating risks in business process models. ACIS 2005 Proceedings, 50.
Sackmann, S. (2008). A Reference Model for Process-Oriented IT Risk Management. In ECIS (pp. 1346-1357).
Sawaya III, W. J., Pathak, S., Day, J. M., & Kristal, M. M. (2015). Sensing abnormal resource flow using adaptive limit process charts in a complex supply network. Decision Sciences, 46(5), 961-979.
Suriadi, S., Weiß, B., Winkelmann, A., ter Hofstede, A. H., Adams, M., Conforti, R. & Rosemann, M. (2014). Current research in risk-aware business process management―overview, comparison, and gap analysis. Communications of the Association for Information Systems, 34(1), 52:933-984.
Thabet, R., Lamine, E., Boufaied, A., Korbaa, O., & Pingaud, H. (2018). Towards a Risk-Aware Business Process Modelling Tool Using the ADOxx Platform. In International Conference on Advanced Information Systems Engineering (pp. 235-248). Springer, Cham.
Ullah, I., Tang, D., Wang, Q., & Yin, L. (2017). Least risky change propagation path analysis in product design process. Systems Engineering, 20(4), 379-391.
Varela-Vaca, Á. J., Parody, L., Gasca, R. M., & Gómez-López, M. T. (2019). Automatic Verification and Diagnosis of Security Risk Assessments in Business Process Models. IEEE Access, 7, 26448-26465.
Wang, M., Hsu, P., & Chuang, Y. C. (2011). Mining workflow outlier with a frequency-based algorithm. Int. J. Control and Automation, 4(2),1-22.
Zur Muehlen, M., & Ho, D. T. Y. (2005). Risk management in the BPM lifecycle. In International Conference on Business Process Management (pp. 454-466). Springer, Berlin, Heidelberg.