ارائه مدلی برای سیستم لجستیک اجرایی عملیات کراس داک (شواهد تجربی: شرکت ایران خودرو)

نوع مقاله : مدیریت تولید و عملیات (برنامه‌­ریزی تولید، چابکی، پایداری، ناب، سبز، برون­‌سپاری، زنجیره تأمین، زنجیره ارزش، کیفیت، بهره وری، صنعت چهار و ابعاد آن، . . .)

نویسندگان

1 مدیریت صنعتی، مدیریت، دانشگاه آزاد اسلامی، فیروزکوه، ایران

2 گروه مدیریت، دانشکده مدیریت و حسابداری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه مدیریت صنعتی، واحد فیروزکوه ، دانشگاه آزاد اسلامی، فیروزکوه ، ایران

چکیده

عملیات کراس داک، تاکتیک اجرایی تحویل کالا با رویکرد تجمیع و توزیع است که سیستم اجرایی یکپارچه لجستیک، با حداقل انباشت موجودی یا با کم‌ترین سطح موجودی مواجه شود. به منظور افزایش چابکی زنجیره تأمین، مهندسین لجستیک، به طراحی و پیاده‌سازی کراس داک در سطح زنجیره تأمین می‌پردازند. مهندسین لجستیک همواره به دنبال ارائه راه حل‌های افزایش سرعت و بهبود ارایه خدمات با حداکثر رعایت ایمنی هستند. رعایت این شاخص‌ها، می‌تواند منجر به ایجاد یک زنجیره تأمین ناب شود. سیستم اجرایی کراس داک به عنوان یک انبار میانی نقش تاثیرگذاری در بهبود جریان مواد اولیه، محصولات و خدمات لجستیکی داشته است. هدف مقاله، ارائه یک مدل ریاضی با رویکرد برنامه‌ریزی زمان‌بندی اجرایی غیرقطعی (احتمالی) تریلرها با هدف نهایی کاهش زمان کل عملیات لجستیک مورد انتظار و در نتیجه کاهش هزینه‌های لجستیک است. مراحل اجرایی کار، از مرحله دریافت پالت از تأمین‌کنندگان یا انبارهای سایر سایت‌های خوشه‌های لجستیک در سطح شبکه اجرایی تأمین و پس از انجام فرآیندهای داخلی در قسمت داک (درب) های ورودی کراس داک، با بارگیری مجدد در داک‌های خروجی شروع می‌شوند. مدل ریاضی مورد استفاده، از نوع برنامه-ریزی عدد صحیح و الگوریتم ژنتیک است و برای تجزیه و تحلیل داده‌ها از نرم افزار MATLAB استفاده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presentation of a Model for Cross Dock Operation Logistics System (An Empirical Study on Iran Khodro Automotive Co)

نویسندگان [English]

  • javad khamisabadi 1
  • Mohammadreza Kabaranzadeh Ghadim 2
  • Mohammad Mehdi Movahedi 3
1
2 Department of management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 Department of industrial management, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
چکیده [English]

Cross Dock operation an execution tactic to deliver cargoes with an aggregation-consolidation approach in such a way that the logistics system faces minimal inventory accumulation or lack of inventory execution. Accordingly in order to increase agility at the supply chain level, logistics engineers are designing and implementing cross docking at the supply chain level. Logistics executives are always striving to find solutions that improve speed and improve supply chain safety. Observing all of these indicators can provide a lean supply chain. Cross Dock as an intermediary warehouse can play an important and influential role in improving the flow of raw materials, products and logistics services. The main purpose of this paper is to present a mathematical model of a trailer scheduling approach with a stochastic planning approach to provide the optimal solution to reduce the expected total logistics operation time and thus reduce logistics costs. These start from the stage of receiving pallets (suppliers) from suppliers or warehouses of other logistics cluster sites at the supply chain level and, following internal logistics processes performed on inlet docks, by reloading in outlet docks. Dock will be completed to fulfill the orders of consumers of these consignments. The mathematical model used is integer programming and genetic algorithm and MATLAB software was used to analyze data.

کلیدواژه‌ها [English]

  • Logistics
  • Supply Chain
  • Cross Dock
  • Scheduling
  • Genetic Algorithm (GA)
Al Chall, Ghewa. "Simulation Modeling of
Cross-Dock and Distribution
Center Based Supply Chains."
(2020).
Archetti, C., Coelho, L. C., & Speranza, M.
G. (2019). An exact algorithm for the
inventory routing problem with
logistic ratio. Transportation
Research Part E: Logistics and
Transportation Review, 131, 96-107.
Babics, T. (2005). Cross-docking in the
sales supply chain: integration of
information and communication (I+
C) relationships. Periodica
Polytechnica Transportation
Engineering, 33(1-2), 69-76.
Bertazzi, L., & Ohlmann, J. W. (2020).
Direct k-routing versus crossdocking: worst-case results.
Optimization Letters, 1-8.
Birasnav, M., Kalaivanan, S., Ramesh, A., &
Tibrewala, R. (2020). Routing
vehicles through cross-docking
facility for third party logistics
service providers. International
Journal of Operational Research,
38(2), 255-277.
Boysen, N. (2010). Truck scheduling at
zero-inventory cross docking
terminals. Computers & Operations
Research, 37(1), 32-41.
Brockman, T. (1999). 21 warehousing
trends in the 21st century. IIE
solutions, 31(7), 36-41.
De, M., & Giri, B. C. (2020). Modelling a
closed-loop supply chain with a
heterogeneous fleet under carbon
emission reduction policy.
Transportation Research Part E:
Logistics and Transportation
Review, 133, 101813.
Dong, J., Jiang, L., Lu, W., & Guo, Q. (2021).
Closed-loop supply chain models
with product remanufacturing
under random demand.
Optimization, 70(1), 27-53.
Eskigun, E., Uzsoy, R., Preckel, P. V.,
Beaujon, G., Krishnan, S., & Tew, J.
D. (2005). Outbound supply chain
network design with mode
selection, lead times and

capacitated vehicle distribution
centers. European Journal of
Operational Research, 165(1), 182-
206.
Fu, R., Qiang, Q. P., Ke, K., & Huang, Z.
(2021). Closed-Loop Supply Chain
Network with Interaction of
Forward and Reverse Logistics.
Sustainable Production and
Consumption.
Gelareh, S., Glover, F., Guemri, O., Hanafi,
S., Nduwayo, P., & Todosijević, R.
(2020). A comparative study of
formulations for a cross-dock door
assignment problem. Omega, 91,
102015.
Gue, K. R .(2020). Crossdockind Just-InTime for Distribution”.
GraduateSchool of Business &
Public Policy Naval Postgraduate
School, Monte-rey, http. web. nps.
navy. mil.
Karia, N. (2019). Halal logistics: practices,
integration and performance of
logistics service providers. Journal
of Islamic Marketing.
Kloos, K., & Pibernik, R. (2020). Allocation
planning under service-level
contracts. European Journal of
Operational Research, 280(1), 203-
218.
Kovács, G., & Spens, K. M. (2020). Relief
Supply Chain Management for
Disasters: Humanitarian, Aid and
Emergency Logistics. Simulation,
436.
Larimi, N. G., & Yaghoubi, S. (2019). A
robust mathematical model for
platelet supply chain considering
social announcements and blood
extraction technologies.
Computers & Industrial
Engineering, 137, 106014.
Li, B., Wang, Y., & Wang, Z. (2021).
Managing a closed-loop supply
chain with take-back legislation
and consumer preference for green
design. Journal of Cleaner
Production, 282, 124481.
Liao, T. W. (2020). Integrated Outbound
Vehicle Routing and Scheduling
Problem at a Multi-Door CrossDock Terminal. IEEE Transactions
on Intelligent Transportation
Systems.
Lively, G. S., Bradley, M., & Sullivan, P.
(2020). U.S. Patent No. 10,614,411.
Washington, DC: U.S. Patent and
Trademark Office.
McWilliams, D. L., Stanfield, P. M., &
Geiger, C. D. (2008). Minimizing the
completion time of the transfer
operations in a central parcel
consolidation terminal with
unequal-batch-size inbound
trailers. Computers & Industrial
Engineering, 54(4), 709-720.
Napolitano, M. (2000). Making the move to
cross docking: A practical guide to
planning, designing, and
implementing a cross dock
operation. Warehousing Education
and Research Council.
Nasr, A. K., Tavana, M., Alavi, B., & Mina, H.
(2021). A novel fuzzy multiobjective circular supplier selection
and order allocation model for
sustainable closed-loop supply
chains. Journal of Cleaner
Production, 124994.
Nogueira, T. H., Coutinho, F. P., Ribeiro, R.
P., & Ravetti, M. G. (2020). Parallelmachine scheduling methodology
for a multi-dock truck sequencing
problem in a cross-docking center.
Computers & Industrial
Engineering, 106391.
Noham, R., & Tzur, M. (2018). Designing
humanitarian supply chains by
incorporating actual post-disaster
decisions. European Journal of
Operational Research, 265(3), 1064-
1077.
Ren, S., Choi, T. M., Lee, K. M., & Lin, L.
(2020). Intelligent service capacity
allocation for cross-border-Ecommerce related third-partyforwarding logistics operations: A
deep learning approach.
Transportation Research Part E:
Logistics and Transportation
Review, 134, 101834.
Rijal, A., Bijvank, M., & de Koster, R. (2019).
Integrated scheduling and
assignment of trucks at unit-load
cross-dock terminals with mixed
service mode dock doors.
European Journal of Operational
Research, 278(3), 752-771.
Rohrer, M. (1995, December). Simulation
and cross docking. In Winter
Simulation Conference
Proceedings, 1995. (pp. 846-849).
IEEE.
Rosenbaum, L. (2020). Facing Covid-19 in
Italy—ethics, logistics, and
therapeutics on the epidemic’s
front line. New England Journal of
Medicine, 382(20), 1873-1875.
Sayed, S. I., Contreras, I., Diaz, J. A., & Luna,
D. E. (2020). Integrated cross-dock
door assignment and truck
scheduling with handling times.
TOP, 1-23.
Son, D., Kim, S., & Jeong, B. (2021).
Sustainable part consolidation
model for customized products in
closed-loop supply chain with
additive manufacturing hub.
Additive Manufacturing, 101643.
Tirkolaee, E. B., Goli, A., Faridnia, A.,
Soltani, M., & Weber, G. W. (2020).
Multi-Objective Optimization for
the Reliable Pollution-Routing
Problem with Cross-Dock
Selection using Pareto-based
Algorithms. Journal of Cleaner
Production, 122927.
Van Berkum, S. (2012). Serbia on the road
to EU accession: Consequences for
agricultural policy and the agrifood chain. CABI.
Wierbowski, S. D., Wingert, B. M., Zheng, J.,
& Camacho, C. J. (2020). Crossdocking benchmark for automated
pose and ranking prediction of
ligand binding. Protein Science,
29(1), 298-305.
Winkelhaus, S., & Grosse, E. H. (2020).
Logistics 4.0: a systematic review
towards a new logistics system.
International Journal of Production
Research, 58(1), 18-43.
Wu, C. H. (2021). A dynamic perspective of
government intervention in a
competitive closed-loop supply
chain. European Journal of
Operational Research.
Yavas, V., & Ozkan-Ozen, Y. D. (2020).
Logistics centers in the new
industrial era: A proposed
framework for logistics center 4.0.
Transportation Research Part E:
Logistics and Transportation
Review, 135, 101864.
Zhang, L. (2020). Optimisation et
simulation d’une plate-forme gérée
en cross-dock.