بررسی عوامل موثر بر استفاده واقعی از فناوری بازاریابی دیجیتال هوشمند

نوع مقاله : فناوری(سیستم اطلاعاتی مدیریت، مدیریت دانش، برون سپاری، سیاستگذاری فناوری، انتقال فناوری، اکوسیستم فناوری، تجاری‌سازی فناوری، فناوری‌های پیشرفته، . . . )

نویسندگان

1 عضو هیئت علمی و استاد گروه مدیریت بازرگانی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

2 عضو هیئت علمی و استادیار گروه مدیریت، دانشکده مدیریت و مالی، دانشگاه خاتم، تهران، ایران

3 کارشناسی ارشد مدیریت بازرگانی، دانشکده مدیریت و مالی، دانشگاه خاتم، تهران، ایران

10.22080/jem.2025.27535.3943

چکیده

این پژوهش به بررسی عوامل مؤثر بر استفاده واقعی از فناوری بازاریابی دیجیتال هوشمند پرداخته است. با توجه به رشد سریع فناوری‌های دیجیتال و اهمیت روزافزون بازاریابی هوشمند در دنیای کسب‌وکار، شناسایی و تحلیل عواملی که می‌توانند بر بهره‌برداری مؤثر از این ابزارها تأثیر بگذارند، از اهمیت ویژه‌ای برخوردار است. فلسفه پژوهش حاضر اثبات‌گرایی، رویکرد آن قیاسی، استراتژی پژوهش پیمایشی، روش تحلیلی کمی، بازه زمانی مقطعی و ابزار پژوهش پرسشنامه می‌باشد. به عبارتی دیگر، روش تحقیق پژوهش کاربردی از نوع توصیفی - پیمایشی و جامعه مورد مطالعه مشتریان فروشگاه اینترنتی دیجی‌کالا هستند و روش نمونه‌گیری غیراحتمالی می‌باشد. ابزار پژوهش پرسشنامه استاندارد است که برای سنجش، پرسشنامه طبق نرم‌افزار G*Power با حداقل اندازه اثر 06/0، خطای نوع اول و توان آزمون به ترتیب 05/0 و 95/0، و تعداد 8 متغیر اثرگذار بر متغیر درون‌زا، به میزان 387 نفر محاسبه و برای اطمینان بیشتر میان 390 کاربر فروشگاه اینترنتی دیجی‌کالا توزیع گردید. پس از تأیید روایی و پایایی پرسشنامه با استفاده از آلفای کرونباخ، پایایی ترکیبی و روایی همگرا و واگرا، داده‌ها با استفاده از نرم‌افزار spss در سطح توصیفی و با استفاده از معادلات ساختاری و نرم‌افزار smart pls در سطح استنباطی پردازش شدند. نتایج حاصل از تحقیق و آزمون استنباطی فرضیه‌ها نشان داد که سهولت استفاده ادراک‌شده، سودمندی ادراک‌شده، هزینه ادراک‌شده، کسب بازده، کارایی، لذت ادراک‌شده و مانع ادراک‌شده بر تمایل به استفاده از فناوری بازاریابی دیجیتال هوشمند تاثیر مثبت معناداری دارد. همچنین تمایل به استفاده از فناوری بازاریابی دیجیتال هوشمند بر استفاده واقعی از فناوری بازاریابی دیجیتال هوشمند موثر است. نتایج این مطالعه نشان می‌دهد که سازمان‌ها باید به سرمایه‌گذاری در آموزش مناسب کارکنان، ارتقاء زیرساخت‌های فناوری و استفاده از تجزیه و تحلیل داده‌ها توجه ویژه‌ای داشته باشند. همچنین، ایجاد فرهنگ سازمانی حمایتی و انعطاف‌پذیر برای پذیرش تغییرات سریع در فناوری و گرایشات بازار، به افزایش کارایی و اثر بخشی کمپین‌های بازاریابی کمک می‌کند. در نهایت، تعامل مثبت و مستمر با مشتریان و استفاده از بازخوردهای آن‌ها به عنوان یک منبع کلیدی اطلاعات می‌تواند به بهبود استراتژی‌های بازاریابی دیجیتال و افزایش وفاداری مشتریان منجر شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Examining the Factors Influencing the Actual Use of Smart Digital Marketing Technology

نویسندگان [English]

  • Seyed Hamid Khodadad Hosseini 1
  • Seyyed Reza Jalalzadeh 2
  • Hadis Layeghmand 3
1 Faculty Member and professor In Business Management Department, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran
2 Faculty Member and assistant professor of management department, Faculty of Management and Finance, Khatam University, Tehran, Iran
3 Master's degree in business management, Faculty of Management and Finance, Khatam University, Tehran, Iran
چکیده [English]

This research has focused on examining the factors affecting the actual use of smart digital marketing technology. Given the rapid growth of digital technologies and the increasing importance of smart marketing in the business world, identifying and analyzing the factors that can influence the effective utilization of these tools is particularly significant. The philosophy of the current research is positivism, its approach is deductive, the research strategy is survey-based, and the analytical method is quantitative. The time frame is cross-sectional, and the research tool is a questionnaire. In other words, this applied research follows a descriptive-survey method, with the study population comprising customers of the online store Digikala, using a non-probability sampling method. The research tool is a standardized questionnaire, designed to assess the factors. According to the G*Power software, with a minimum effect size of 0.06, type I error of 0.05, and test power of 0.95, 387 individuals were calculated based on 8 influencing variables for the endogenous variable, and for greater assurance, it was distributed among 390 users of the Digikala online store. After confirming the validity and reliability of the questionnaire using Cronbach's alpha, combined reliability, and convergent and discriminant validity, the data were processed using SPSS software at the descriptive level and through structural equation modeling and Smart PLS software at the inferential level. The results obtained from the research and hypothesis testing indicated that perceived ease of use, perceived usefulness, perceived cost, return on investment, efficiency, perceived enjoyment, and perceived barriers have a significant positive effect on the willingness to use intelligent digital marketing technology. Additionally, the willingness to use intelligent digital marketing technology influences the actual use of intelligent digital marketing technology. The results of this study indicate that organizations should pay special attention to investing in proper employee training, enhancing technological infrastructure, and utilizing data analytics. Additionally, creating a supportive and flexible organizational culture for adopting rapid changes in technology and market trends contributes to the efficiency and effectiveness of marketing campaigns. Ultimately, positive and continuous interaction with customers and using their feedback as a key source of information can lead to improvements in digital marketing strategies and increased customer loyalty.

کلیدواژه‌ها [English]

  • Smart Digital Marketing
  • Willingness to Use Technology
  • Perceived Ease of Use
  • Perceived Usefulness
  • Perceived Cost
  • Perceived Enjoyment
  • Perceived Access Barrier
Ajzen, I., & Fishbein, M. (1980). Understanding Attitude and Predicting Social Behavior, Prentice-hall. nglewood scliffs, nj, 17(25), 123-145.‏
Alahverdi, Zahra and Landaran Esfahani, Saeid. (2021). Investigating the effect of technology acceptance model and social factors on attitude and purchase intention, considering the moderating role of information technology mindest (case study: Snapfood application users). Quarterly Journal of Management and Sustainable Development Studies, 1(2), 191-216. [In Persian] https://doi.org/10.30495/msds.2022.1949223.1027
Akhyar, I., & Garnida, N. (2021). Influencing factors of digital channel usage to subscribe internet service. International Journal of Accounting, 6(38), 48-61.
Al-Azzam, A. F., & Al-Mizeed, K. (2021). The effect of digital marketing on purchasing decisions: A case study in Jordan. The Journal of Asian Finance, Economics and Business, 8(5), 455-463. https://doi.org/10.13106/jafeb.2021.vol8.no5.0455
Alfany, Z., Saufi, A., & Mulyono, L. E. H. (2019). The impact of social influence, self-efficacy, perceived enjoyment, and individual mobility on attitude toward use and intention to use mobile payment of OVO. Global Journal of Management and Business Research, 19(7), 1-8.
Alshurideh, M. T., Al Kurdi, B., Masa’deh, R. E., & Salloum, S. A. (2021). The moderation effect of gender on accepting electronic payment technology: a study on United Arab Emirates consumers. Review of International Business and Strategy, 31(3), 375-396. https://doi.org/10.1108/RIBS-08-2020-0102
Al-Tmeemy, S. M. H., Abdul-Rahman, H., & Harun, Z. (2012). Contractors' perception of the use of costs of quality system in Malaysian building construction projects. International Journal of Project Management, 30(7), 827-838. https://doi.org/10.1016/j.ijproman.2011.12.001
Bashirkhodaprasti, Ramin, Bagheri Qarabalag, & Houshmand. (2023). Exploring the role of urban entrepreneurship, digital technologies and smart logistics on sustainable business in the smart city: the moderating role of market turbulence. Scientific Journal of International Business Management, 6(2), 155-175. [In Persian]
Balog, A., & Pribeanu, C. (2010). The role of perceived enjoyment in the students’ acceptance of an augmented reality teaching platform: A structural equation modelling approach. Studies in Informatics and Control, 19(3), 319-330.
Bardhan, A.D., Jaee, D., & Kroll, C. (2000). The internet, E-Commerce and the real estate industry. CA, USA: Fisher Center for Real Estate and Urban Economics: Berkeley, 2000
Black, Fatemeh and Zarinjo, Soheila. (2021). Digital marketing and its effect on small businesses (Case study of restaurants). The 12th International Conference on Information, Computer and Telecommunication Technology, Tehran. [In Persian]
Busman, S. A., & Ananda, N. A. (2022). Artificial intelligence and digital marketing role in increasing consumer purchase intention. American International Journal of Business Management (AIJBM), 5(01), 63-68.
Chaffey, D.; Ellis-Chadwick, F. Digital Marketing; Pearson: London, UK, 2019.
Chang, J. H., & Wang, S. H. (2019). Different levels of destination expectation: The effects of online advertising and electronic word-of-mouth. Telematics and Informatics, 36, 27-38.
Dash, G., & Chakraborty, D. (2021). Digital transformation of marketing strategies during a pandemic: Evidence from an emerging economy during COVID-19. Sustainability, 13(12), 6735.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace 1. Journal of applied social psychology, 22(14), 1111-1132.
Dastane, D. O. (2020). Impact of digital marketing on online purchase intention: Mediation effect of customer relationship management. Journal of Asian Business Strategy, DOI, 10, 142-158.
Dumitriu, D., & Popescu, M.A. (2020). Artificial intelligence solutions for digital marketing. Procedia Manufacturing, 46, 630-636. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
Foster, K., Smith, G., Ariyachandra, T., & Frolick, M. N. (2015). Business intelligence competency center: Improving data and decisions. Information Systems Management, 32(3), 229-233.
Field, A. 2018. Discovering Statistics Using IBM SPSS Statistics. SAGE Publications. https://books.google.com/books?id=JIrutAEACAAJ.
Gao, J., Ren, L., Yang, Y., Zhang, D., & Li, L. (2022). The impact of artificial intelligence technology stimuli on smart customer experience and the moderating effect of technology readiness. International Journal of Emerging Markets.
Ghamkhaari, Seyyedeh Masoumeh and Pour Aliganji, Leila. (2022). Investigating the effect of perceived usefulness, ease of use, enjoyment, trust and social influence on intention to use with the mediating role of consumer attitude (case study: household solar electricity customers in Yazd). Intelligent Marketing Management, 4(2), 66-87. [In Persian]
Hassan, A. (2021). The usage of artificial intelligence in digital marketing: A review. Applications of Artificial Intelligence in Business, Education and Healthcare, 357-383.
Hosseinzadeh, Vahabzadeh, Shadan, Abbasi Nami, Mehrani, & Shahrabadi. (2022). Presenting the conceptual framework of using digital marketing in the capital market based on the theories of planned behavior and technology adoption - case study: stock brokerage companies in Tehran. Financial Economics, 16(61), 129-156. [In Persian] https://doi.org/10.30495/fed.2023.698846
Hwangbo, H.; Kim, Y. Session-Based Recommender System for Sustainable Digital Marketing. Sustainability 2019, 11, 3336
Hoffman, D. L., Novak, T. P., & Schlosser, A. (2000). The evolution of the digital divide: How gaps in Internet access may impact electronic commerce. Journal of computer-mediated communication, 5(3), JCMC534.
Jadhav, G. G., Gaikwad, S. V., & Bapat, D. (2023). A systematic literature review: digital marketing and its impact on SMEs. Journal of Indian Business Research, 15(1), 76-91.
Kaur, D., & Kaur, R. (2022). Elucidating the role of gender differences via TAM in e-recruitment adoption in India: a multi-group analysis using MICOM. The Bottom Line, 35(2/3), 115-136. https://doi.org/10.1108/BL-11-2021-0104
Kaushal, V., & Yadav, R. (2023). Learning successful implementation of Chatbots in businesses from B2B customer experience perspective. Concurrency and Computation: Practice and Experience, 35(1), e7450.
Karke Abadi, Mahdieh and Mohammadi, Keyhan. (2021). Examining the role of digital marketing measures in business development and customer satisfaction. The first international congress and exhibition of modern instruments industry and market, Kish Island. [In Persian]
Kardooni, R., Yusoff, S. B., & Kari, F. B. (2016). Renewable energy technology acceptance in Peninsular Malaysia. Energy Policy, 88, 1-10.
Kim, J., Kang, S., & Bae, J. (2022). Human likeness and attachment effect on the perceived interactivity of AI speakers. Journal of Business Research, 144, 797-804.
Kim, H. C., & Hyun, M. Y. (2016). Predicting the use of smartphone-based Augmented Reality (AR): Does telepresence really help? Computers in Human Behavior, 59, 28-38. https://doi.org/10.1016/j.chb.2016.01.001
Low, S., Ullah, F., Shirowzhan, S., Sepasgozar, S. M., & Lin Lee, C. (2020). Smart digital marketing capabilities for sustainable property development: A case of Malaysia. Sustainability, 12(13), 5402.
Liu, H. H., & Chou, H. Y. (2021). The effects of pricing strategy on upgrade intentions. Marketing Intelligence & Planning, 39(5), 743-757. https://doi.org/10.1108/MIP-08-2020-0343
Liu, Y., & Zhang, H. (2022). Reassessing research on marketing channel strategies in the internet era: opportunities, challenges, and responses. Journal of Contemporary Marketing Science, 5(1), 81-91.
Low, S., Ullah, F., Shirowzhan, S., Sepasgozar, S. M., & Lin Lee, C. (2020). Smart digital marketing capabilities for sustainable property development: A case of Malaysia. Sustainability, 12(13), 5402. https://doi.org/10.3390/su12135402
Martini, A., Neirotti, P., & Appio, F. P. (2017). Knowledge searching, integrating and performing: always a tuned trio for innovation? Long Range Planning, 50(2), 200-220.
Masis, N. N. S., Maimun, N. H. A., Noor, N. A. M., Yusoff, N. S. M., & Rahman, M. S. A. (2017). E-commerce in the Malaysian real estate agency industry. International Journal of Real Estate Studies, 11, 33-41.
McLean, G., & Wilson, A. (2019). Shopping in the digital world: Examining customer engagement through augmented reality mobile applications. Computers in Human Behavior, 101, 210-224. https://doi.org/10.1016/j.chb.2019.07.002
Mohamad, M. A., Hanafiah, M. H., & Radzi, S. M. (2021). Understanding tourist mobile hotel booking behaviour: Incorporating perceived enjoyment and perceived price value in the modified Technology Acceptance Model. Tourism & Management Studies, 17(1), 19-30.
Mazzarol, T. SMEs engagement with e-commerce, e-business and e-marketing. Small Enterp. Res. 2015, 22,79–90.
Naeem, M., Jawaid, S. T., & Mustafa, S. (2022). Evolution of modified TAM associated with e-banking services adoption: a systematic PRISMA review from 1975 to 2021. Journal of Modelling in Management, 18(3), 942-972. https://doi.org/10.1108/JM2-10-2021-0251
Navimipour, N. J., & Soltani, Z. (2016). The impact of cost, technology acceptance and employees' satisfaction on the effectiveness of the electronic customer relationship management systems. Computers in Human Behavior, 55, 1052-1066. https://doi.org/10.1016/j.chb.2015.10.036
Nicolescu, L., & Tudorache, M. T. (2022). Human-Computer Interaction in Customer Service: The Experience with AI Chatbots—A Systematic Literature Review. Electronics, 11(10), 1579.
Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Intentions to use mobile services: Antecedents and cross-service comparisons. Journal of the Academy of Marketing Science, 33(3), 330-346. https://doi.org/10.1177/0092070305276149
Pantano, E.; Timmermans, H. Smart Retailing; Springer: Berlin/Heidelberg, Germany, 2019.
Pakparvor, Meimenad, Mohammad Mahmoudi, Hosseini, & Mirza Hassan. (2020). Smart digital marketing model for the development of Iran's top technology exports in Central Asia and the Caucasus region. Central Asia and Caucasus Studies, 110(26), 39-76. [In Persian]
Rahman, M. M., & Sloan, T. R. (2017). User adoption of mobile commerce in Bangladesh: Integrating perceived risk, perceived cost and personal awareness with TAM. International Technology Management Review, 103-124. https://doi.org/10.2991/itmr.2017.6.3.4
Royle, J.; Laing, A. The digital marketing skills gap: Developing a Digital Marketer Model for the communication industries. Int. J. Inf. Manag. 2014, 34, 65–73.
Rauniar, R., Rawski, G., Crumbly, J., & Simms, J. (2009). C2C online auction website performance: Buyer's perspective. Journal of Electronic Commerce Research, 10(2), 56-75.
Saleem, M., Kamarudin, S., Shoaib, H. M., & Nasar, A. (2021). Retail consumers’ behavioral intention to use augmented reality mobile apps in Pakistan. Journal of Internet Commerce, 21(4), 497-525. https://doi.org/10.1080/15332861.2021.1975427
Sedaghati, Ali and Seidian, Bahram. (2023). Digital marketing and brand impact on small businesses. 2nd International Conference on Health, Educational Sciences and Psychology, Helsinki, Finland.
Sherman. (2019). Generate leads for real estate using these digital marketing channels. Available online: https: //www.lyfemarketing.com/blog/generate-leads-real-estate/ (accessed on 9 December 2019).
Talari, & Khoushro. (2022). Global trend analysis of fourth generation marketing research: a mixed approach. New Marketing Research Journal, 12(2), 161-188.‎ [In Persian]
Verhoef, P. C., & Bijmolt, T. H. (2019). Marketing perspectives on digital business models: A framework and overview of the special issue. International Journal of Research in Marketing, 36(3), 341-349.https://doi.org/10.1016/j.ijresmar.2019.08.001
Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002.
Zadegan, H., Aghaei, M., Esfidani, M. R., Hasangholipour, T., & Ansari, M. (2023). Designing and Explaining the Digital Marketing Model with the Approach of Customer Experience Management (CEM). Journal of System Management.
Zainab, B., Awais Bhatti, M., & Alshagawi, M. (2017). Factors affecting e-training adoption: An examination of perceived cost, computer self-efficacy and the technology acceptance model. Behaviour & Information Technology, 36(12), 1261-1273. https://doi.org/10.1080/0144929X.2017.1380703