ارزیابی آمادگی دانشگاه هوشمند تحت فناوری های تحول آفرین

نوع مقاله : فناوری(سیستم اطلاعاتی مدیریت، مدیریت دانش، برون سپاری، سیاستگذاری فناوری، انتقال فناوری، اکوسیستم فناوری، تجاری‌سازی فناوری، فناوری‌های پیشرفته، . . . )

نویسندگان

1 نویسنده مسئول، استادیار گروه مدیریت، دانشگاه شیراز، شیراز، ایران

2 استاد گروه مدیریت صنعتی دانشگاه علامه طباطبایی، تهرانT ایران

چکیده

فناوری­های تحول آفرین نه تنها تاثیر مثبتی بر فرایندهای کسب­وکار داشته­اند بلکه موجب تحول دیجیتالی در سازمان­ها شده­اند. دانشگاه هوشمند حوزه­ای در حال ظهور و به سرعت در حال رشد است که نشان دهنده یکپارچگی خلاق فناوری­های هوشمند، ویژگی­های هوشمند، نرم افزارهای هوشمند و سیستم­های سخت­افزاری، آموزش هوشمند، برنامه­های درسی هوشمند، یادگیری هوشمند و تحلیل­های دانشگاهی و شاخه­های مختلف علوم کامپیوتر و مهندسی کامپیوتر است. هدف این پژوهش شناسایی فناوری­های تحول آفرین دانشگاه هوشمند و ارائه مدلی برای ارزیابی آمادگی دانشگاه هوشمند است. این پژوهش کاربردی است و در سه مرحله انجام شده است. در مرحله اول فناوی­های تحول آفرین از مطالعات پیشین بر اساس نظر خبرگان با استفاده از روش دلفی ارزیابی شدند. خبرگان پژوهش شامل 13 نفر از اعضای هیئت علمی دانشگاه فعال در حوزه فناوری اطلاعات بودند. در مرحله دوم با استفاده از تحلیل سلسله مراتبی فازی وزن هر فناوری مشخص گردید. در مرحله آخر مدلی جهت ارزیابی آمادگی دانشگاه هوشمند طراحی گردید و مدل در یک دانشگاه نمونه ارزیابی شد. نتایج پژوهش نشان داد که  فناوری­های آموزشی، اینترنت اشیا و واقعیت افزوده بیشترین اهمیت را در یک دانشگاه هوشمند دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Smart University Readiness Assessment within Disruptive Technologies

نویسندگان [English]

  • Mohammad Hossein Ronaghi 1
  • Kamran Feizi 2
1 Corresponding Author, Assistant Professor, Department of Management, Shiraz University, Shiraz, Iran
2 Professor, Department of Industrial Management, Allameh Tabatabaei University, Tehran, Iran
چکیده [English]

Disruptive technology is an innovation that significantly alters the way that consumers, industries, or businesses operate. A disruptive technology sweeps away the systems or habits it replaces because it has attributes that are recognizably superior.Disruptive technologies are making positive impacts not only on business processes but also the digital transformation of organizations. Smart University is an emerging and rapidly growing area that represents a creative integration of smart technologies, smart features, smart software and hardware systems, smart pedagogy, smart curricula, smart learning and academic analytics, and various branches of computer science and computer engineering. The aim of this research is to recognize the smart University technologies and present a model for the assessment of smart University readiness. This research is an applied one, and has been carried out in three phases. Based on the previous studies, in the first phase research experts evaluate disruptive technologies by Delphi method. The expert panel consists of 13 faculty members who were active in information technology field. In the second phase the enabled technologies are ranked by fuzzy AHP. In the final phase the readiness model is designed and the presented model would be tested in a sample University. The research results showed that the educational technologies, internet of things and augmented reality had the most prominence in a smart University.

کلیدواژه‌ها [English]

  • Smart University
  • Disruptive Technologies
  • University 4.0
  • Education Technology
  • Internet of Things
Aboelmaged M. & Hashem G. (2018). RFID application in patient and medical asset operations management: A technology, organizational and environmental (TOE) perspective into key enablers and impediments, International Journal of Medical Informatics, 118: 58-64. https://doi.org/10.1016/j.ijmedinf.2018.07.009
Aghaei togh M. & Naser M. (2019). Mechanisms and Challenges of Implementing Blockchain Ledger in E-Government Development and its Impacts on the Tax System, Administrative law, 6(19): 9-33. [in Persian]

Aheleroff S., Xu X., Lu Y., Aristazabal M. & Valasquez J.P. (2020). IoT-enabled smart appliances under industry 4.0: A case study, Advanced Engineering Informatics, 43: 101043. https://doi.org/10.1016/j.aei.2020.101043

Ahuett-Garza H. & Kurfess T. (2018). A brief discussion on the trends of habilitating technologies for Industry 4.0 and smart manufacturing. Manufacturing Letters, 15: 60–63. https://doi.org/10.1016/j.mfglet.2018.02.011
Alahi, M.E.E.  Xie, L., Mukhopadhyay, S. & Burkitt, L. (2017). A temperature compensated smart nitrate-sensor for agricultural industry, IEEE Transactions on Industrial Electronics. 64(9): 7333–7341, https://doi.org/10.1109/TIE.2017.2696508.
Castelo-Branco I., Cruz-Jesus F. & Oliveira T. (2019). Assessing Industry 4.0 readiness in manufacturing: Evidence for the European Union. Computers in Industry, 107: 22–32. https://doi.org/10.1016/j.compind.2019.01.007
Catal C. & Tekinerdogan B. (2019). Aligning education for the life sciences domain to support digitalization and industry 4.0, Procedia Computer Science, 158: 99–106. https://doi.org/10.1016/j.procs.2019.09.032
Cheng C., Zhong H. & Cao L. (2020). Facilitating speed of internationalization: The roles of business intelligence and organizational agility, Journal of Business Research, 110: 95-103. https://doi.org/10.1016/j.jbusres.2020.01.003
Chun S. (2013). Korea’s smart education initiative and its pedagogical implications. CNU Journal of Educational Studies. 34(2), 1–18. https://doi.org/10.18612/cnujes.2013.34.2.1
Correa C.G., Machado M.A.A.M., Ranzini E., Tori R. & Nunes F. (2017).  Virtual reality simulator for dental anesthesia training in the inferior alveolar nerve block. Journal of Applied Oral Science, 25(4):357–366. https://doi.org/10.1590/1678-7757-2016-0386
Costa D.G. & de Oliveira F.P. (2020). A prioritization approach for optimization of multiple concurrent sensing applications in smart cities, Future generation computer systems, 108: 228-243  https://doi.org/10.1016/j.future.2020.02.067
Crofton E., Botinesteana C., Fenelon M. & Gallagher E. (2019). Potential applications for virtual and augmented reality technologies in sensory science, Innovative Food Science and Emerging Technologies. 56:1-9. https://doi.org/10.1016/j.ifset.2019.102178
De Boer I.R., Wesselink P.R. & Vervoorn J.M. (2016). Student performance and appreciation using 3D vs. 2D vision in a virtual learning environment. European Journal of Dental Education, 20(3):142–147. https://doi.org/10.1111/eje.12152
Eidson J., Lee E.A., Matic S., Seshia S.A. & Zou J. (2012). Distributed Real-Time Software for Cyber-Physical Systems, Proceedings of the IEEE, 100(1): 45-59. https://doi.org/10.1109/JPROC.2011.2161237
Galego D., Giovannella C. & Mealha O. (2016). Determination of the Smartness of a University Campus: The Case Study of Aveiro, Social and Behavioral Sciences, 223: 147-152. https://doi.org/10.1016/j.sbspro.2016.05.336
Grover V. & Kohli R. (2013). revealing your hand: caveats in implementing digital business strategy, MIS Quarterly. 37: 655–63.
Helo P. & Hao Y. (2019). Blockchains in operations and supply chains: a model and reference implementation, Computers & Industrial Engineering, 136: 242-51. https://doi.org/10.1016/j.cie.2019.07.023
Henfridsson, O., Mathiassen, L., & Svahn, F. (2014). Managing Technological Change in the Digital Age: The Role of Architectural Frames, Journal of Information Technology, 29(1): 27-43.
Hofmann E. & Rüsch M. (2017). Industry 4.0 and the current status as well as future prospects on logistics, Computers in Industry. 89: 23–34, http://dx.doi.org/10.1016/j.compind.2017.04.002.
Jafarnejad Chaghooshi A. & Mokhtarzadeh Garoosi A. (2016). Cloud Computing Technology Diffusion Forecasting in Iran by employing Growth Curves & Cross Country's diffusion trends Impact, journal of technology development management, 4(1): 97-126. [in Persian]
Juma M.K. & Tjahyanto A. (2019). Challenges of cloud computing adoption model for higher educational level in Zanzibar, Procedia Computer Science, 161: 1046–1054. https://doi.org/10.1016/j.procs.2019.11.215
Lee J., Kao H.A. & Yang S. (2014). Service innovation and smart analytics for Industry4.0 and big data environment. Procedia Cirp 16: 3–8. https://doi.org/10.1016/j.procir.2014.02.001
Lei C., Wan K. & Man K.L. (2013). Developing a Smart Learning Environment in Universities Via Cyber-Physical Systems, Procedia Computer Science, 17: 583 – 585. https://doi.org/10.1016/j.procs.2013.05.075

Lokuge S., Sedere D., Grover V. & Xu D. (2018). Organizational readiness for digital innovation: Development and empirical calibration of a construct, Information and amp; Management, 56(3):445-461. https://doi.org/10.1016/j.im.2018.09.001

Lucato W.C., Pacchini A.P., Facchini F. & Mummolo G. (2019). Model to evaluate the industry 4.0 readiness in industrial companies, IFAC PapersOnLine 52-13: 1808–1813. https://doi.org/10.1016/j.ifacol.2019.11.464
Markoe Hayes S., Chapple S. & Ramirez C. (2014). Strong, Smart and Bold Strategies for Improving Attendance and Retention in an After-School Intervention. Journal of Adolescent Health, 54(3): 64-69. https://doi.org/10.1016/j.jadohealth.2013.12.030
Matthews V.O., Osuoyah Q., Popoola S.I., Adetiba E. & Atayero A.A. (2017). C-BRIG: a network architecture for real-time information exchange in smart and connected campuses, in: Proceeding s of The World Congress on Engineering 2017, Lect. Notes Engineering Computer Science., London, U.K.

Mendel, J.M. & John, R.I.B. (2007). Type-2 Fuzzy Sets Made Simple, IEEE Transactions on Fuzzy Systems. 10: 117- 127. http://dx.doi.org/10.1109/91.995115

Mittal S., Khan M.A., Romero D. & Wuest T. (2017). Smart manufacturing: characteristics, technologies and enabling factors. Journal of Engineering Manufacture. 223(5): 1342–1362. https://doi.org/10.1177/0954405417736547
Moin S., Karim A., Safdar Z., Safdar K., Ahmed E. & Imran M. (2019). Securing IoTs in distributed blockchain: Analysis, requirements and open issues, Future Generation Computer Systems, 100: 325–343. https://doi.org/10.1016/j.future.2019.05.023
Nick G., Szaller A., Bergmann J. & Vargedo T. (2019). Industry 4.0 in Hungry: model and the first result in connection in data application, IFAC PapersOnLine 52(13): 289–294. https://doi.org/10.1016/j.ifacol.2019.11.185
Pacchini A.P., Lucato W.C. & Facchini F. (2019). The degree of readiness for the implementation of Industry 4.0, Computers in Industry, 113: 1-8. https://doi.org/10.1016/j.compind.2019.103125
Page, K., Dang, Y. & Dalal, R. (2013). Impacts of conservation tillage on soil quality, including soil-borne crop diseases, with a focus on semi-arid grain cropping systems, Australas. Plant Pathol. 42 (3): 363–377, https://doi.org/10.1007/s13313-013-0198-y.
Popoola S.I., Atayero A.A., Okanlawon T.T., Omopariola B.I. & Takpor O.A. (2018). Smart campus: Data on energy consumption in an ICT-driven university, Data in Brief, 16: 780–793. https://doi.org/10.1016/j.dib.2017.11.091
Presthus W & Omalley N.O. (2017). Motivations and barriers for end-user adoption of bitcoin as digital currency, international conference on health and social care information systems and technologies centeris / ProjMAN / HCist, November 2017, Barcelona, Spain, Procedia Computer Science, 121: 89–97. https://doi.org/10.1016/j.procs.2017.11.013
Qian Z.H., Feng X., Li Y. & Tang K. (2018). Virtual reality model of the three-dimensional anatomy of the cavernous sinus based on a cadaveric image and dissection. Journal of Craniofacial Surgery, 29(1):163–166. https://doi.org/10.1097/SCS.0000000000004046.
Ronaghi MH. & Forouharfar A. (2020). A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern country within the context of Unified Theory of Acceptance and Use of Technology model (UTAUT), Technology in Society, In press. Available online 20 September 2020, https://doi.org/10.1016/j.techsoc.2020.101415.
Ronaghi MH. & Hosseini F. (2018). Identifying and Ranking IoT Services in Healthcare Sector, Journal of health administration, 21(73): 29-41. [in Persian]
Shekari A., Mohammadi Z. & Mohammadi B. (2017). The effect of using new educational technologies on the qualiy of educational activities before, during and after training, Research in Curriculum Planning, 14(25): 74-83. [In Persian]
Shuhaiber A. & Mashal I. (2019). Understanding users’ acceptance of smart homes, Technology in Society, 58: 101110. https://doi.org/10.1016/j.techsoc.2019.01.003
Taherdoost H. (2017). Appraising the smart card technology adoption; case of application in niversity environment, Procedia engineering, 181; 1049-1957. https://doi.org/10.1016/j.proeng.2017.02.506
Taleb Z. & Hassanzadeh F. (2015). Toward Smart School: A Comparison between Smart School and Traditional School for Mathematics Learning, Procedia - Social and Behavioral Sciences 171: 90 – 95. https://doi.org/10.1016/j.sbspro.2015.01.093
Tikhomirov, V. & Dneprovskaya, N. (2015). Development of strategy for smart University. In: 2015 Open Education Global International Conference, Banff, Canada.
Vaidya S., Ambad P. & Bhosle S. (2018). Industry 4.0 – a glimpse. Procedia Manufacturing 20: 233–238. https://doi.org/10.1016/j.promfg.2018.02.034
Yao W., Chu C.H. & Li Z. (2011). leveraging complex event processing for smart hospitals using RFID, Journal of Network
and Computer Applications, 34: 799–810. https://doi.org/10.1016/j.jnca.2 010.04.020
Zargar S.M. (2019). Assessment of Barriers to Establishing the Internet of Things in Libraries in Iran based on a Combined
Approach, Iranian journal of information processing and management, 34(3): 1371-1398. [in Persian]
Zare Ravasan A. & Pashaie Soorkali Z. (2011). Studying RFID Consumer Acceptance Using TAM: The Case of IUST Students,
information science and technology, 3: 171-188. [in Persian]
Zhong R.Y., Xu X., Klotz E. & Newman S.T. (2017). Intelligent manufacturing in the context of industry 4.0: a review.
Engineering, 3(5): 616–630. https://doi.org/10.1016/J.ENG. 2017.05.01